Featured Post

Blog Commencement Notice

Note: For information about me and my novels, visit my website  elizataye.com .  Disclaimer: This blog is solely for the purpose of givin...

Thursday, January 19, 2017

Relevant Scientific Research to Oceania: The Underwater City

The most interesting piece of relevant scientific information to Oceania: The Underwater City I came across while conducting post-writing research was the microbe genus Geobacter. Before finding out about this bacterial species, I invented an organism that could not only consume all kinds of organic matter but also give off energy in the process. At the time, not knowing any such real organism existed, I gave the genetically modified bacteria in my novel the ridiculous name of “Biodegradus finaltutus.” Not only was the name not at all scientific (or Latin for that matter) but it didn’t even make any sense. After finding out about the genus Geobacter, I switched the name to Geobacter omnescomedenti. The species in Oceania: The Underwater City—G. omnescomedenti—doesn’t actually exist. I derived the name from Latin for “all-eater” because the microorganism was genetically mutated to biodegrade any sort of waste the underwater city could create and to give off ample amounts of energy in the process. However, the genus Geobacter holds a variety of species capable of biodegrading a multitude of substances—including metal—such as Geobacter metallireducens.

According to the NASA article I first read about Geobacter in, the first ones were discovered in the mud of the Potomac River way back in 1987. Since then, there has been a variety of research on several species in the Geobacteraceae family. While the species in the novel is fake, some species of Geobacter are being genetically modified to help them give off more energy. In research published in just July of last year, researchers from the University of Massachusetts Amherst found that biological nanowires from the pili of Geobacter sulfurreducens could be used to conduct electricity. Along with genetic modification, they were able to increase the conductivity 2000x from the genetically unaltered ones. They are calling the type of pili of these Geobacter species “electrically conductive pili” or e-pili for short (Tan et al. 2016). In case you don’t know what pili are, they are the hair-like filaments bacteria have on their cell walls.
I don’t want to delve in too deeply into the science involved, but if you want to read more, their open source (meaning you can read it for free) article is at http://onlinelibrary.wiley.com/doi/10.1002/smll.201601112/full.

Based on the research articles on geobacter.org, different species of Geobacter are yielding all sorts of sustainable alternatives. For one, they can help neutralize or remove both oil and radioactive pollutants in water. They get rid of oil in groundwater by oxidizing it to carbon dioxide. Geobacter has also shown applications that can be used in bioelectronics (electrical components made from biological material). The bacteria have the capability to create conductive films they use to coat their pili, which function as nanowires. They can send electrons along this pilus, which means that these pili can conduct electricity similar to some metals. Because of this, if used in electronic devices, they could work underwater without being shorted. There may be even more uses. Research on the various Geobacter species is still being conducted at the University of Massachusetts Amherst. Two weeks ago, they published another research paper on the electric conductivity of Geobacter metallireducens and Geobacter sulfurreducens.

In conclusion, as improbable as my idea seemed to me when I first came up with it, it seems that an “all-eater” is more plausible than impossible—with genetic modification of course.

I realize that this blog post is a lot shorter than my other ones, so as more research relating to my novel comes across my attention, I’ll update this one with more information. If you know any current or recent research relevant to the story, please let me know!

After creating this blog post, I came up with the idea that perhaps you may like to know about some of the research I conducted to write Oceania: The Underwater City. In the next two blog posts, I’ll be sharing with you some of my research.

Sources and Further Reading

Citation of Article:
Tan, Y., Adhikari, R. Y., Malvankar, N. S., Pi, S., Ward, J. E., Woodard, T. L., Nevin, K. P., Xia, Q., Tuominen, M. T. and Lovley, D. R. (2016), Synthetic Biological Protein Nanowires with High Conductivity. Small, 12: 4481–4485. doi:10.1002/smll.201601112

Website where article was obtained: http://onlinelibrary.wiley.com/doi/10.1002/smll.201601112/full

1 comment:

  1. The underlying infrastructure of the natural world is much more complex than how it is presented, mainly because we don't really know what is out there. If there is no positive confirmation of what is filling in the blanks, we leave them blank. Just like any story we can write has supposedly already been written, any microbe we can dream up is probably already here.